CVE-2022-49328: Vulnerability in Linux Linux
In the Linux kernel, the following vulnerability has been resolved: mt76: fix use-after-free by removing a non-RCU wcid pointer Fixes an issue caught by KASAN about use-after-free in mt76_txq_schedule by protecting mtxq->wcid with rcu_lock between mt76_txq_schedule and sta_info_[alloc, free]. [18853.876689] ================================================================== [18853.876751] BUG: KASAN: use-after-free in mt76_txq_schedule+0x204/0xaf8 [mt76] [18853.876773] Read of size 8 at addr ffffffaf989a2138 by task mt76-tx phy0/883 [18853.876786] [18853.876810] CPU: 5 PID: 883 Comm: mt76-tx phy0 Not tainted 5.10.100-fix-510-56778d365941-kasan #5 0b01fbbcf41a530f52043508fec2e31a4215 [18853.876840] Call trace: [18853.876861] dump_backtrace+0x0/0x3ec [18853.876878] show_stack+0x20/0x2c [18853.876899] dump_stack+0x11c/0x1ac [18853.876918] print_address_description+0x74/0x514 [18853.876934] kasan_report+0x134/0x174 [18853.876948] __asan_report_load8_noabort+0x44/0x50 [18853.876976] mt76_txq_schedule+0x204/0xaf8 [mt76 074e03e4640e97fe7405ee1fab547b81c4fa45d2] [18853.877002] mt76_txq_schedule_all+0x2c/0x48 [mt76 074e03e4640e97fe7405ee1fab547b81c4fa45d2] [18853.877030] mt7921_tx_worker+0xa0/0x1cc [mt7921_common f0875ebac9d7b4754e1010549e7db50fbd90a047] [18853.877054] __mt76_worker_fn+0x190/0x22c [mt76 074e03e4640e97fe7405ee1fab547b81c4fa45d2] [18853.877071] kthread+0x2f8/0x3b8 [18853.877087] ret_from_fork+0x10/0x30 [18853.877098] [18853.877112] Allocated by task 941: [18853.877131] kasan_save_stack+0x38/0x68 [18853.877147] __kasan_kmalloc+0xd4/0xfc [18853.877163] kasan_kmalloc+0x10/0x1c [18853.877177] __kmalloc+0x264/0x3c4 [18853.877294] sta_info_alloc+0x460/0xf88 [mac80211] [18853.877410] ieee80211_prep_connection+0x204/0x1ee0 [mac80211] [18853.877523] ieee80211_mgd_auth+0x6c4/0xa4c [mac80211] [18853.877635] ieee80211_auth+0x20/0x2c [mac80211] [18853.877733] rdev_auth+0x7c/0x438 [cfg80211] [18853.877826] cfg80211_mlme_auth+0x26c/0x390 [cfg80211] [18853.877919] nl80211_authenticate+0x6d4/0x904 [cfg80211] [18853.877938] genl_rcv_msg+0x748/0x93c [18853.877954] netlink_rcv_skb+0x160/0x2a8 [18853.877969] genl_rcv+0x3c/0x54 [18853.877985] netlink_unicast_kernel+0x104/0x1ec [18853.877999] netlink_unicast+0x178/0x268 [18853.878015] netlink_sendmsg+0x3cc/0x5f0 [18853.878030] sock_sendmsg+0xb4/0xd8 [18853.878043] ____sys_sendmsg+0x2f8/0x53c [18853.878058] ___sys_sendmsg+0xe8/0x150 [18853.878071] __sys_sendmsg+0xc4/0x1f4 [18853.878087] __arm64_compat_sys_sendmsg+0x88/0x9c [18853.878101] el0_svc_common+0x1b4/0x390 [18853.878115] do_el0_svc_compat+0x8c/0xdc [18853.878131] el0_svc_compat+0x10/0x1c [18853.878146] el0_sync_compat_handler+0xa8/0xcc [18853.878161] el0_sync_compat+0x188/0x1c0 [18853.878171] [18853.878183] Freed by task 10927: [18853.878200] kasan_save_stack+0x38/0x68 [18853.878215] kasan_set_track+0x28/0x3c [18853.878228] kasan_set_free_info+0x24/0x48 [18853.878244] __kasan_slab_free+0x11c/0x154 [18853.878259] kasan_slab_free+0x14/0x24 [18853.878273] slab_free_freelist_hook+0xac/0x1b0 [18853.878287] kfree+0x104/0x390 [18853.878402] sta_info_free+0x198/0x210 [mac80211] [18853.878515] __sta_info_destroy_part2+0x230/0x2d4 [mac80211] [18853.878628] __sta_info_flush+0x300/0x37c [mac80211] [18853.878740] ieee80211_set_disassoc+0x2cc/0xa7c [mac80211] [18853.878851] ieee80211_mgd_deauth+0x4a4/0x10a0 [mac80211] [18853.878962] ieee80211_deauth+0x20/0x2c [mac80211] [18853.879057] rdev_deauth+0x7c/0x438 [cfg80211] [18853.879150] cfg80211_mlme_deauth+0x274/0x414 [cfg80211] [18853.879243] cfg80211_mlme_down+0xe4/0x118 [cfg80211] [18853.879335] cfg80211_disconnect+0x218/0x2d8 [cfg80211] [18853.879427] __cfg80211_leave+0x17c/0x240 [cfg80211] [18853.879519] cfg80211_leave+0x3c/0x58 [cfg80211] [18853.879611] wiphy_suspend+0xdc/0x200 [cfg80211] [18853.879628] dpm_run_callback+0x58/0x408 [18853.879642] __device_suspend+0x4cc/0x864 [18853.879658] async_suspend+0x34/0xf4 [18 ---truncated---
AI Analysis
Technical Summary
CVE-2022-49328 is a high-severity use-after-free vulnerability found in the Linux kernel's mt76 wireless driver, specifically within the function mt76_txq_schedule. The vulnerability arises due to improper handling of the wcid pointer, which is not protected by Read-Copy-Update (RCU) locking mechanisms, leading to a use-after-free condition. This flaw was detected by the Kernel Address Sanitizer (KASAN), which reported an invalid read operation on a freed memory address during the scheduling of transmission queues. The root cause involves a race condition between the scheduling function and the allocation/freeing of station information structures (sta_info), which are managed by the mac80211 subsystem. The vulnerability affects Linux kernel versions including 5.10.100 and potentially others using the mt76 driver for Mediatek wireless chipsets. Exploitation could allow a local attacker with limited privileges (PR:L) to execute arbitrary code or cause denial of service by corrupting kernel memory, impacting confidentiality, integrity, and availability. The vulnerability does not require user interaction and has a CVSS 3.1 score of 7.8, reflecting high impact and relatively low attack complexity. The patch involves adding proper RCU locking around the wcid pointer to prevent concurrent access issues. No known exploits are currently reported in the wild, but the vulnerability's nature and impact warrant prompt attention.
Potential Impact
For European organizations, this vulnerability poses a significant risk, especially for those relying on Linux-based systems with Mediatek wireless chipsets using the mt76 driver. The flaw can lead to kernel crashes or privilege escalation, potentially allowing attackers to disrupt network connectivity or gain unauthorized access to sensitive systems. This is particularly critical for sectors with high dependence on wireless communications, such as telecommunications, critical infrastructure, and enterprise IT environments. The compromise of wireless drivers could facilitate lateral movement within networks or interception of data, undermining confidentiality and operational continuity. Given the widespread use of Linux in servers, embedded devices, and IoT infrastructure across Europe, the vulnerability could affect a broad range of devices, increasing the attack surface. Organizations with remote or hybrid workforces relying on wireless connectivity are also at elevated risk. The absence of known exploits currently provides a window for mitigation, but the high severity score indicates that exploitation could have severe consequences.
Mitigation Recommendations
European organizations should prioritize updating their Linux kernels to versions that include the patch fixing CVE-2022-49328. Since the vulnerability is in the mt76 wireless driver, organizations should audit their hardware inventory to identify devices using Mediatek chipsets with this driver. For devices where immediate patching is not feasible, disabling the affected wireless interfaces or drivers temporarily can reduce risk. Implementing strict access controls to limit local user privileges can mitigate exploitation likelihood, as the vulnerability requires local privilege. Additionally, monitoring kernel logs for KASAN or related error messages can help detect attempts to exploit this flaw. Network segmentation to isolate critical systems and wireless infrastructure can limit potential lateral movement. Organizations should also ensure robust endpoint detection and response (EDR) capabilities to identify anomalous kernel-level activities. Coordinating with hardware vendors for firmware updates and maintaining up-to-date security advisories will support ongoing risk management.
Affected Countries
Germany, France, United Kingdom, Netherlands, Italy, Spain, Poland, Sweden, Belgium, Finland
CVE-2022-49328: Vulnerability in Linux Linux
Description
In the Linux kernel, the following vulnerability has been resolved: mt76: fix use-after-free by removing a non-RCU wcid pointer Fixes an issue caught by KASAN about use-after-free in mt76_txq_schedule by protecting mtxq->wcid with rcu_lock between mt76_txq_schedule and sta_info_[alloc, free]. [18853.876689] ================================================================== [18853.876751] BUG: KASAN: use-after-free in mt76_txq_schedule+0x204/0xaf8 [mt76] [18853.876773] Read of size 8 at addr ffffffaf989a2138 by task mt76-tx phy0/883 [18853.876786] [18853.876810] CPU: 5 PID: 883 Comm: mt76-tx phy0 Not tainted 5.10.100-fix-510-56778d365941-kasan #5 0b01fbbcf41a530f52043508fec2e31a4215 [18853.876840] Call trace: [18853.876861] dump_backtrace+0x0/0x3ec [18853.876878] show_stack+0x20/0x2c [18853.876899] dump_stack+0x11c/0x1ac [18853.876918] print_address_description+0x74/0x514 [18853.876934] kasan_report+0x134/0x174 [18853.876948] __asan_report_load8_noabort+0x44/0x50 [18853.876976] mt76_txq_schedule+0x204/0xaf8 [mt76 074e03e4640e97fe7405ee1fab547b81c4fa45d2] [18853.877002] mt76_txq_schedule_all+0x2c/0x48 [mt76 074e03e4640e97fe7405ee1fab547b81c4fa45d2] [18853.877030] mt7921_tx_worker+0xa0/0x1cc [mt7921_common f0875ebac9d7b4754e1010549e7db50fbd90a047] [18853.877054] __mt76_worker_fn+0x190/0x22c [mt76 074e03e4640e97fe7405ee1fab547b81c4fa45d2] [18853.877071] kthread+0x2f8/0x3b8 [18853.877087] ret_from_fork+0x10/0x30 [18853.877098] [18853.877112] Allocated by task 941: [18853.877131] kasan_save_stack+0x38/0x68 [18853.877147] __kasan_kmalloc+0xd4/0xfc [18853.877163] kasan_kmalloc+0x10/0x1c [18853.877177] __kmalloc+0x264/0x3c4 [18853.877294] sta_info_alloc+0x460/0xf88 [mac80211] [18853.877410] ieee80211_prep_connection+0x204/0x1ee0 [mac80211] [18853.877523] ieee80211_mgd_auth+0x6c4/0xa4c [mac80211] [18853.877635] ieee80211_auth+0x20/0x2c [mac80211] [18853.877733] rdev_auth+0x7c/0x438 [cfg80211] [18853.877826] cfg80211_mlme_auth+0x26c/0x390 [cfg80211] [18853.877919] nl80211_authenticate+0x6d4/0x904 [cfg80211] [18853.877938] genl_rcv_msg+0x748/0x93c [18853.877954] netlink_rcv_skb+0x160/0x2a8 [18853.877969] genl_rcv+0x3c/0x54 [18853.877985] netlink_unicast_kernel+0x104/0x1ec [18853.877999] netlink_unicast+0x178/0x268 [18853.878015] netlink_sendmsg+0x3cc/0x5f0 [18853.878030] sock_sendmsg+0xb4/0xd8 [18853.878043] ____sys_sendmsg+0x2f8/0x53c [18853.878058] ___sys_sendmsg+0xe8/0x150 [18853.878071] __sys_sendmsg+0xc4/0x1f4 [18853.878087] __arm64_compat_sys_sendmsg+0x88/0x9c [18853.878101] el0_svc_common+0x1b4/0x390 [18853.878115] do_el0_svc_compat+0x8c/0xdc [18853.878131] el0_svc_compat+0x10/0x1c [18853.878146] el0_sync_compat_handler+0xa8/0xcc [18853.878161] el0_sync_compat+0x188/0x1c0 [18853.878171] [18853.878183] Freed by task 10927: [18853.878200] kasan_save_stack+0x38/0x68 [18853.878215] kasan_set_track+0x28/0x3c [18853.878228] kasan_set_free_info+0x24/0x48 [18853.878244] __kasan_slab_free+0x11c/0x154 [18853.878259] kasan_slab_free+0x14/0x24 [18853.878273] slab_free_freelist_hook+0xac/0x1b0 [18853.878287] kfree+0x104/0x390 [18853.878402] sta_info_free+0x198/0x210 [mac80211] [18853.878515] __sta_info_destroy_part2+0x230/0x2d4 [mac80211] [18853.878628] __sta_info_flush+0x300/0x37c [mac80211] [18853.878740] ieee80211_set_disassoc+0x2cc/0xa7c [mac80211] [18853.878851] ieee80211_mgd_deauth+0x4a4/0x10a0 [mac80211] [18853.878962] ieee80211_deauth+0x20/0x2c [mac80211] [18853.879057] rdev_deauth+0x7c/0x438 [cfg80211] [18853.879150] cfg80211_mlme_deauth+0x274/0x414 [cfg80211] [18853.879243] cfg80211_mlme_down+0xe4/0x118 [cfg80211] [18853.879335] cfg80211_disconnect+0x218/0x2d8 [cfg80211] [18853.879427] __cfg80211_leave+0x17c/0x240 [cfg80211] [18853.879519] cfg80211_leave+0x3c/0x58 [cfg80211] [18853.879611] wiphy_suspend+0xdc/0x200 [cfg80211] [18853.879628] dpm_run_callback+0x58/0x408 [18853.879642] __device_suspend+0x4cc/0x864 [18853.879658] async_suspend+0x34/0xf4 [18 ---truncated---
AI-Powered Analysis
Technical Analysis
CVE-2022-49328 is a high-severity use-after-free vulnerability found in the Linux kernel's mt76 wireless driver, specifically within the function mt76_txq_schedule. The vulnerability arises due to improper handling of the wcid pointer, which is not protected by Read-Copy-Update (RCU) locking mechanisms, leading to a use-after-free condition. This flaw was detected by the Kernel Address Sanitizer (KASAN), which reported an invalid read operation on a freed memory address during the scheduling of transmission queues. The root cause involves a race condition between the scheduling function and the allocation/freeing of station information structures (sta_info), which are managed by the mac80211 subsystem. The vulnerability affects Linux kernel versions including 5.10.100 and potentially others using the mt76 driver for Mediatek wireless chipsets. Exploitation could allow a local attacker with limited privileges (PR:L) to execute arbitrary code or cause denial of service by corrupting kernel memory, impacting confidentiality, integrity, and availability. The vulnerability does not require user interaction and has a CVSS 3.1 score of 7.8, reflecting high impact and relatively low attack complexity. The patch involves adding proper RCU locking around the wcid pointer to prevent concurrent access issues. No known exploits are currently reported in the wild, but the vulnerability's nature and impact warrant prompt attention.
Potential Impact
For European organizations, this vulnerability poses a significant risk, especially for those relying on Linux-based systems with Mediatek wireless chipsets using the mt76 driver. The flaw can lead to kernel crashes or privilege escalation, potentially allowing attackers to disrupt network connectivity or gain unauthorized access to sensitive systems. This is particularly critical for sectors with high dependence on wireless communications, such as telecommunications, critical infrastructure, and enterprise IT environments. The compromise of wireless drivers could facilitate lateral movement within networks or interception of data, undermining confidentiality and operational continuity. Given the widespread use of Linux in servers, embedded devices, and IoT infrastructure across Europe, the vulnerability could affect a broad range of devices, increasing the attack surface. Organizations with remote or hybrid workforces relying on wireless connectivity are also at elevated risk. The absence of known exploits currently provides a window for mitigation, but the high severity score indicates that exploitation could have severe consequences.
Mitigation Recommendations
European organizations should prioritize updating their Linux kernels to versions that include the patch fixing CVE-2022-49328. Since the vulnerability is in the mt76 wireless driver, organizations should audit their hardware inventory to identify devices using Mediatek chipsets with this driver. For devices where immediate patching is not feasible, disabling the affected wireless interfaces or drivers temporarily can reduce risk. Implementing strict access controls to limit local user privileges can mitigate exploitation likelihood, as the vulnerability requires local privilege. Additionally, monitoring kernel logs for KASAN or related error messages can help detect attempts to exploit this flaw. Network segmentation to isolate critical systems and wireless infrastructure can limit potential lateral movement. Organizations should also ensure robust endpoint detection and response (EDR) capabilities to identify anomalous kernel-level activities. Coordinating with hardware vendors for firmware updates and maintaining up-to-date security advisories will support ongoing risk management.
For access to advanced analysis and higher rate limits, contact root@offseq.com
Technical Details
- Data Version
- 5.1
- Assigner Short Name
- Linux
- Date Reserved
- 2025-02-26T02:08:31.538Z
- Cisa Enriched
- true
- Cvss Version
- 3.1
- State
- PUBLISHED
Threat ID: 682d982dc4522896dcbe56be
Added to database: 5/21/2025, 9:09:01 AM
Last enriched: 7/3/2025, 2:55:06 AM
Last updated: 8/4/2025, 6:15:47 PM
Views: 12
Related Threats
CVE-2025-45146: n/a
CriticalCVE-2025-38213
LowCVE-2025-8859: Unrestricted Upload in code-projects eBlog Site
MediumCVE-2025-8865: CWE-476 NULL Pointer Dereference in YugabyteDB Inc YugabyteDB
MediumCVE-2025-8852: Information Exposure Through Error Message in WuKongOpenSource WukongCRM
MediumActions
Updates to AI analysis are available only with a Pro account. Contact root@offseq.com for access.
External Links
Need enhanced features?
Contact root@offseq.com for Pro access with improved analysis and higher rate limits.